Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-comlaw Structured version   Visualization version   Unicode version

Definition df-comlaw 41823
Description: The commutative law for binary operations, see definitions of laws A2. and M2. in section 1.1 of [Hall] p. 1, or definition 8 in [BourbakiAlg1] p. 7: the value of a binary operation applied to two operands equals the value of a binary operation applied to the two operands in reversed order. By this definition, the commutative law is expressed as binary relation: a binary operation is related to a set by comLaw if the commutative law holds for this binary operation regarding this set. Note that the binary operation needs neither to be closed nor to be a function. (Contributed by AV, 7-Jan-2020.)
Assertion
Ref Expression
df-comlaw  |- comLaw  =  { <. o ,  m >.  | 
A. x  e.  m  A. y  e.  m  ( x o y )  =  ( y o x ) }
Distinct variable group:    m, o, x, y

Detailed syntax breakdown of Definition df-comlaw
StepHypRef Expression
1 ccomlaw 41821 . 2  class comLaw
2 vx . . . . . . . 8  setvar  x
32cv 1482 . . . . . . 7  class  x
4 vy . . . . . . . 8  setvar  y
54cv 1482 . . . . . . 7  class  y
6 vo . . . . . . . 8  setvar  o
76cv 1482 . . . . . . 7  class  o
83, 5, 7co 6650 . . . . . 6  class  ( x o y )
95, 3, 7co 6650 . . . . . 6  class  ( y o x )
108, 9wceq 1483 . . . . 5  wff  ( x o y )  =  ( y o x )
11 vm . . . . . 6  setvar  m
1211cv 1482 . . . . 5  class  m
1310, 4, 12wral 2912 . . . 4  wff  A. y  e.  m  ( x
o y )  =  ( y o x )
1413, 2, 12wral 2912 . . 3  wff  A. x  e.  m  A. y  e.  m  ( x
o y )  =  ( y o x )
1514, 6, 11copab 4712 . 2  class  { <. o ,  m >.  |  A. x  e.  m  A. y  e.  m  (
x o y )  =  ( y o x ) }
161, 15wceq 1483 1  wff comLaw  =  { <. o ,  m >.  | 
A. x  e.  m  A. y  e.  m  ( x o y )  =  ( y o x ) }
Colors of variables: wff setvar class
This definition is referenced by:  iscomlaw  41826
  Copyright terms: Public domain W3C validator