Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-csgrp2 Structured version   Visualization version   Unicode version

Definition df-csgrp2 41858
Description: A commutative semigroup is a semigroup with a commutative operation. (Contributed by AV, 20-Jan-2020.)
Assertion
Ref Expression
df-csgrp2  |- CSGrpALT  =  {
g  e. SGrpALT  |  ( +g  `  g ) comLaw  ( Base `  g ) }

Detailed syntax breakdown of Definition df-csgrp2
StepHypRef Expression
1 ccsgrp2 41854 . 2  class CSGrpALT
2 vg . . . . . 6  setvar  g
32cv 1482 . . . . 5  class  g
4 cplusg 15941 . . . . 5  class  +g
53, 4cfv 5888 . . . 4  class  ( +g  `  g )
6 cbs 15857 . . . . 5  class  Base
73, 6cfv 5888 . . . 4  class  ( Base `  g )
8 ccomlaw 41821 . . . 4  class comLaw
95, 7, 8wbr 4653 . . 3  wff  ( +g  `  g ) comLaw  ( Base `  g )
10 csgrp2 41853 . . 3  class SGrpALT
119, 2, 10crab 2916 . 2  class  { g  e. SGrpALT  |  ( +g  `  g ) comLaw  ( Base `  g ) }
121, 11wceq 1483 1  wff CSGrpALT  =  {
g  e. SGrpALT  |  ( +g  `  g ) comLaw  ( Base `  g ) }
Colors of variables: wff setvar class
This definition is referenced by:  iscsgrpALT  41862
  Copyright terms: Public domain W3C validator