Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-elwise Structured version   Visualization version   Unicode version

Definition df-elwise 33033
Description: Define the elementwise operation associated with a given operation. For instance,  + is the addition of complex numbers (axaddf 9966), so if  A and  B are sets of complex numbers, then  ( A (elwise `  +  ) B ) is the set of numbers of the form  ( x  +  y ) with  x  e.  A and  y  e.  B. The set of odd natural numbers is  ( ( { 2 } (elwise `  x.  ) NN0 )
(elwise `  +  ) { 1 } ), or less formally  2 NN0  + 
1. (Contributed by BJ, 22-Dec-2021.)
Assertion
Ref Expression
df-elwise  |- elwise  =  ( o  e.  _V  |->  ( x  e.  _V , 
y  e.  _V  |->  { z  |  E. u  e.  x  E. v  e.  y  z  =  ( u o v ) } ) )
Distinct variable group:    x, o, y, z, u, v

Detailed syntax breakdown of Definition df-elwise
StepHypRef Expression
1 celwise 33032 . 2  class elwise
2 vo . . 3  setvar  o
3 cvv 3200 . . 3  class  _V
4 vx . . . 4  setvar  x
5 vy . . . 4  setvar  y
6 vz . . . . . . . . 9  setvar  z
76cv 1482 . . . . . . . 8  class  z
8 vu . . . . . . . . . 10  setvar  u
98cv 1482 . . . . . . . . 9  class  u
10 vv . . . . . . . . . 10  setvar  v
1110cv 1482 . . . . . . . . 9  class  v
122cv 1482 . . . . . . . . 9  class  o
139, 11, 12co 6650 . . . . . . . 8  class  ( u o v )
147, 13wceq 1483 . . . . . . 7  wff  z  =  ( u o v )
155cv 1482 . . . . . . 7  class  y
1614, 10, 15wrex 2913 . . . . . 6  wff  E. v  e.  y  z  =  ( u o v )
174cv 1482 . . . . . 6  class  x
1816, 8, 17wrex 2913 . . . . 5  wff  E. u  e.  x  E. v  e.  y  z  =  ( u o v )
1918, 6cab 2608 . . . 4  class  { z  |  E. u  e.  x  E. v  e.  y  z  =  ( u o v ) }
204, 5, 3, 3, 19cmpt2 6652 . . 3  class  ( x  e.  _V ,  y  e.  _V  |->  { z  |  E. u  e.  x  E. v  e.  y  z  =  ( u o v ) } )
212, 3, 20cmpt 4729 . 2  class  ( o  e.  _V  |->  ( x  e.  _V ,  y  e.  _V  |->  { z  |  E. u  e.  x  E. v  e.  y  z  =  ( u o v ) } ) )
221, 21wceq 1483 1  wff elwise  =  ( o  e.  _V  |->  ( x  e.  _V , 
y  e.  _V  |->  { z  |  E. u  e.  x  E. v  e.  y  z  =  ( u o v ) } ) )
Colors of variables: wff setvar class
This definition is referenced by: (None)
  Copyright terms: Public domain W3C validator