| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-eqg | Structured version Visualization version Unicode version | ||
| Description: Define the equivalence
relation in a quotient ring or quotient group
(where |
| Ref | Expression |
|---|---|
| df-eqg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cqg 17590 |
. 2
| |
| 2 | vr |
. . 3
| |
| 3 | vi |
. . 3
| |
| 4 | cvv 3200 |
. . 3
| |
| 5 | vx |
. . . . . . . 8
| |
| 6 | 5 | cv 1482 |
. . . . . . 7
|
| 7 | vy |
. . . . . . . 8
| |
| 8 | 7 | cv 1482 |
. . . . . . 7
|
| 9 | 6, 8 | cpr 4179 |
. . . . . 6
|
| 10 | 2 | cv 1482 |
. . . . . . 7
|
| 11 | cbs 15857 |
. . . . . . 7
| |
| 12 | 10, 11 | cfv 5888 |
. . . . . 6
|
| 13 | 9, 12 | wss 3574 |
. . . . 5
|
| 14 | cminusg 17423 |
. . . . . . . . 9
| |
| 15 | 10, 14 | cfv 5888 |
. . . . . . . 8
|
| 16 | 6, 15 | cfv 5888 |
. . . . . . 7
|
| 17 | cplusg 15941 |
. . . . . . . 8
| |
| 18 | 10, 17 | cfv 5888 |
. . . . . . 7
|
| 19 | 16, 8, 18 | co 6650 |
. . . . . 6
|
| 20 | 3 | cv 1482 |
. . . . . 6
|
| 21 | 19, 20 | wcel 1990 |
. . . . 5
|
| 22 | 13, 21 | wa 384 |
. . . 4
|
| 23 | 22, 5, 7 | copab 4712 |
. . 3
|
| 24 | 2, 3, 4, 4, 23 | cmpt2 6652 |
. 2
|
| 25 | 1, 24 | wceq 1483 |
1
|
| Colors of variables: wff setvar class |
| This definition is referenced by: releqg 17641 eqgfval 17642 |
| Copyright terms: Public domain | W3C validator |