MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-eupth Structured version   Visualization version   Unicode version

Definition df-eupth 27058
Description: Define the set of all Eulerian paths on an arbitrary graph. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by AV, 18-Feb-2021.)
Assertion
Ref Expression
df-eupth  |- EulerPaths  =  ( g  e.  _V  |->  {
<. f ,  p >.  |  ( f (Trails `  g ) p  /\  f : ( 0..^ (
# `  f )
) -onto-> dom  (iEdg `  g
) ) } )
Distinct variable group:    f, g, p

Detailed syntax breakdown of Definition df-eupth
StepHypRef Expression
1 ceupth 27057 . 2  class EulerPaths
2 vg . . 3  setvar  g
3 cvv 3200 . . 3  class  _V
4 vf . . . . . . 7  setvar  f
54cv 1482 . . . . . 6  class  f
6 vp . . . . . . 7  setvar  p
76cv 1482 . . . . . 6  class  p
82cv 1482 . . . . . . 7  class  g
9 ctrls 26587 . . . . . . 7  class Trails
108, 9cfv 5888 . . . . . 6  class  (Trails `  g )
115, 7, 10wbr 4653 . . . . 5  wff  f (Trails `  g ) p
12 cc0 9936 . . . . . . 7  class  0
13 chash 13117 . . . . . . . 8  class  #
145, 13cfv 5888 . . . . . . 7  class  ( # `  f )
15 cfzo 12465 . . . . . . 7  class ..^
1612, 14, 15co 6650 . . . . . 6  class  ( 0..^ ( # `  f
) )
17 ciedg 25875 . . . . . . . 8  class iEdg
188, 17cfv 5888 . . . . . . 7  class  (iEdg `  g )
1918cdm 5114 . . . . . 6  class  dom  (iEdg `  g )
2016, 19, 5wfo 5886 . . . . 5  wff  f : ( 0..^ ( # `  f ) ) -onto-> dom  (iEdg `  g )
2111, 20wa 384 . . . 4  wff  ( f (Trails `  g )
p  /\  f :
( 0..^ ( # `  f ) ) -onto-> dom  (iEdg `  g )
)
2221, 4, 6copab 4712 . . 3  class  { <. f ,  p >.  |  ( f (Trails `  g
) p  /\  f : ( 0..^ (
# `  f )
) -onto-> dom  (iEdg `  g
) ) }
232, 3, 22cmpt 4729 . 2  class  ( g  e.  _V  |->  { <. f ,  p >.  |  ( f (Trails `  g
) p  /\  f : ( 0..^ (
# `  f )
) -onto-> dom  (iEdg `  g
) ) } )
241, 23wceq 1483 1  wff EulerPaths  =  ( g  e.  _V  |->  {
<. f ,  p >.  |  ( f (Trails `  g ) p  /\  f : ( 0..^ (
# `  f )
) -onto-> dom  (iEdg `  g
) ) } )
Colors of variables: wff setvar class
This definition is referenced by:  releupth  27059  eupths  27060
  Copyright terms: Public domain W3C validator