| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-fin3 | Structured version Visualization version Unicode version | ||
| Description: A set is III-finite (weakly Dedekind finite) iff its power set is Dedekind finite. Definition III of [Levy58] p. 2. (Contributed by Stefan O'Rear, 12-Nov-2014.) |
| Ref | Expression |
|---|---|
| df-fin3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cfin3 9103 |
. 2
| |
| 2 | vx |
. . . . . 6
| |
| 3 | 2 | cv 1482 |
. . . . 5
|
| 4 | 3 | cpw 4158 |
. . . 4
|
| 5 | cfin4 9102 |
. . . 4
| |
| 6 | 4, 5 | wcel 1990 |
. . 3
|
| 7 | 6, 2 | cab 2608 |
. 2
|
| 8 | 1, 7 | wceq 1483 |
1
|
| Colors of variables: wff setvar class |
| This definition is referenced by: isfin3 9118 |
| Copyright terms: Public domain | W3C validator |