![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-fld | Structured version Visualization version Unicode version |
Description: Definition of a field. A field is a commutative division ring. (Contributed by FL, 6-Sep-2009.) (Revised by Jeff Madsen, 10-Jun-2010.) (New usage is discouraged.) |
Ref | Expression |
---|---|
df-fld |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cfld 33790 |
. 2
![]() ![]() | |
2 | cdrng 33747 |
. . 3
![]() ![]() | |
3 | ccm2 33788 |
. . 3
![]() ![]() | |
4 | 2, 3 | cin 3573 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
5 | 1, 4 | wceq 1483 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
This definition is referenced by: flddivrng 33798 fldcrng 33803 isfld2 33804 |
Copyright terms: Public domain | W3C validator |