MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-frgp Structured version   Visualization version   Unicode version

Definition df-frgp 18123
Description: Define the free group on a set  I of generators, defined as the quotient of the free monoid on  I  X.  2o (representing the generator elements and their formal inverses) by the free group equivalence relation df-efg 18122. (Contributed by Mario Carneiro, 1-Oct-2015.)
Assertion
Ref Expression
df-frgp  |- freeGrp  =  ( i  e.  _V  |->  ( (freeMnd `  ( i  X.  2o ) )  /.s  ( ~FG  `  i
) ) )

Detailed syntax breakdown of Definition df-frgp
StepHypRef Expression
1 cfrgp 18120 . 2  class freeGrp
2 vi . . 3  setvar  i
3 cvv 3200 . . 3  class  _V
42cv 1482 . . . . . 6  class  i
5 c2o 7554 . . . . . 6  class  2o
64, 5cxp 5112 . . . . 5  class  ( i  X.  2o )
7 cfrmd 17384 . . . . 5  class freeMnd
86, 7cfv 5888 . . . 4  class  (freeMnd `  (
i  X.  2o ) )
9 cefg 18119 . . . . 5  class ~FG
104, 9cfv 5888 . . . 4  class  ( ~FG  `  i
)
11 cqus 16165 . . . 4  class  /.s
128, 10, 11co 6650 . . 3  class  ( (freeMnd `  ( i  X.  2o ) )  /.s  ( ~FG  `  i ) )
132, 3, 12cmpt 4729 . 2  class  ( i  e.  _V  |->  ( (freeMnd `  ( i  X.  2o ) )  /.s  ( ~FG  `  i ) ) )
141, 13wceq 1483 1  wff freeGrp  =  ( i  e.  _V  |->  ( (freeMnd `  ( i  X.  2o ) )  /.s  ( ~FG  `  i
) ) )
Colors of variables: wff setvar class
This definition is referenced by:  frgpval  18171
  Copyright terms: Public domain W3C validator