| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-fsupp | Structured version Visualization version Unicode version | ||
| Description: Define the property of a function to be finitely supported (in relation to a given zero). (Contributed by AV, 23-May-2019.) |
| Ref | Expression |
|---|---|
| df-fsupp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cfsupp 8275 |
. 2
| |
| 2 | vr |
. . . . . 6
| |
| 3 | 2 | cv 1482 |
. . . . 5
|
| 4 | 3 | wfun 5882 |
. . . 4
|
| 5 | vz |
. . . . . . 7
| |
| 6 | 5 | cv 1482 |
. . . . . 6
|
| 7 | csupp 7295 |
. . . . . 6
| |
| 8 | 3, 6, 7 | co 6650 |
. . . . 5
|
| 9 | cfn 7955 |
. . . . 5
| |
| 10 | 8, 9 | wcel 1990 |
. . . 4
|
| 11 | 4, 10 | wa 384 |
. . 3
|
| 12 | 11, 2, 5 | copab 4712 |
. 2
|
| 13 | 1, 12 | wceq 1483 |
1
|
| Colors of variables: wff setvar class |
| This definition is referenced by: relfsupp 8277 isfsupp 8279 |
| Copyright terms: Public domain | W3C validator |