![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-gbo | Structured version Visualization version Unicode version |
Description: Define the set of
(strong) odd Goldbach numbers, which are positive odd
integers that can be expressed as the sum of three odd primes.
By
this definition, the strong ternary Goldbach conjecture can be expressed
as ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
df-gbo |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cgbo 41635 |
. 2
![]() | |
2 | vp |
. . . . . . . . . 10
![]() ![]() | |
3 | 2 | cv 1482 |
. . . . . . . . 9
![]() ![]() |
4 | codd 41538 |
. . . . . . . . 9
![]() | |
5 | 3, 4 | wcel 1990 |
. . . . . . . 8
![]() ![]() ![]() |
6 | vq |
. . . . . . . . . 10
![]() ![]() | |
7 | 6 | cv 1482 |
. . . . . . . . 9
![]() ![]() |
8 | 7, 4 | wcel 1990 |
. . . . . . . 8
![]() ![]() ![]() |
9 | vr |
. . . . . . . . . 10
![]() ![]() | |
10 | 9 | cv 1482 |
. . . . . . . . 9
![]() ![]() |
11 | 10, 4 | wcel 1990 |
. . . . . . . 8
![]() ![]() ![]() |
12 | 5, 8, 11 | w3a 1037 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
13 | vz |
. . . . . . . . 9
![]() ![]() | |
14 | 13 | cv 1482 |
. . . . . . . 8
![]() ![]() |
15 | caddc 9939 |
. . . . . . . . . 10
![]() ![]() | |
16 | 3, 7, 15 | co 6650 |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() |
17 | 16, 10, 15 | co 6650 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
18 | 14, 17 | wceq 1483 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
19 | 12, 18 | wa 384 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
20 | cprime 15385 |
. . . . . 6
![]() ![]() | |
21 | 19, 9, 20 | wrex 2913 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
22 | 21, 6, 20 | wrex 2913 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
23 | 22, 2, 20 | wrex 2913 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
24 | 23, 13, 4 | crab 2916 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
25 | 1, 24 | wceq 1483 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
This definition is referenced by: isgbo 41641 tgoldbachgtALTV 41700 |
Copyright terms: Public domain | W3C validator |