MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-lat Structured version   Visualization version   Unicode version

Definition df-lat 17046
Description: Define the class of all lattices. A lattice is a poset in which the join and meet of any two elements always exists. (Contributed by NM, 18-Oct-2012.) (Revised by NM, 12-Sep-2018.)
Assertion
Ref Expression
df-lat  |-  Lat  =  { p  e.  Poset  |  ( dom  ( join `  p
)  =  ( (
Base `  p )  X.  ( Base `  p
) )  /\  dom  ( meet `  p )  =  ( ( Base `  p )  X.  ( Base `  p ) ) ) }

Detailed syntax breakdown of Definition df-lat
StepHypRef Expression
1 clat 17045 . 2  class  Lat
2 vp . . . . . . . 8  setvar  p
32cv 1482 . . . . . . 7  class  p
4 cjn 16944 . . . . . . 7  class  join
53, 4cfv 5888 . . . . . 6  class  ( join `  p )
65cdm 5114 . . . . 5  class  dom  ( join `  p )
7 cbs 15857 . . . . . . 7  class  Base
83, 7cfv 5888 . . . . . 6  class  ( Base `  p )
98, 8cxp 5112 . . . . 5  class  ( (
Base `  p )  X.  ( Base `  p
) )
106, 9wceq 1483 . . . 4  wff  dom  ( join `  p )  =  ( ( Base `  p
)  X.  ( Base `  p ) )
11 cmee 16945 . . . . . . 7  class  meet
123, 11cfv 5888 . . . . . 6  class  ( meet `  p )
1312cdm 5114 . . . . 5  class  dom  ( meet `  p )
1413, 9wceq 1483 . . . 4  wff  dom  ( meet `  p )  =  ( ( Base `  p
)  X.  ( Base `  p ) )
1510, 14wa 384 . . 3  wff  ( dom  ( join `  p
)  =  ( (
Base `  p )  X.  ( Base `  p
) )  /\  dom  ( meet `  p )  =  ( ( Base `  p )  X.  ( Base `  p ) ) )
16 cpo 16940 . . 3  class  Poset
1715, 2, 16crab 2916 . 2  class  { p  e.  Poset  |  ( dom  ( join `  p
)  =  ( (
Base `  p )  X.  ( Base `  p
) )  /\  dom  ( meet `  p )  =  ( ( Base `  p )  X.  ( Base `  p ) ) ) }
181, 17wceq 1483 1  wff  Lat  =  { p  e.  Poset  |  ( dom  ( join `  p
)  =  ( (
Base `  p )  X.  ( Base `  p
) )  /\  dom  ( meet `  p )  =  ( ( Base `  p )  X.  ( Base `  p ) ) ) }
Colors of variables: wff setvar class
This definition is referenced by:  islat  17047
  Copyright terms: Public domain W3C validator