![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-nlm | Structured version Visualization version Unicode version |
Description: A normed (left) module is a module which is also a normed group over a normed ring, such that the norm distributes over scalar multiplication. (Contributed by Mario Carneiro, 4-Oct-2015.) |
Ref | Expression |
---|---|
df-nlm |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnlm 22385 |
. 2
![]() | |
2 | vf |
. . . . . . 7
![]() ![]() | |
3 | 2 | cv 1482 |
. . . . . 6
![]() ![]() |
4 | cnrg 22384 |
. . . . . 6
![]() | |
5 | 3, 4 | wcel 1990 |
. . . . 5
![]() ![]() ![]() |
6 | vx |
. . . . . . . . . . 11
![]() ![]() | |
7 | 6 | cv 1482 |
. . . . . . . . . 10
![]() ![]() |
8 | vy |
. . . . . . . . . . 11
![]() ![]() | |
9 | 8 | cv 1482 |
. . . . . . . . . 10
![]() ![]() |
10 | vw |
. . . . . . . . . . . 12
![]() ![]() | |
11 | 10 | cv 1482 |
. . . . . . . . . . 11
![]() ![]() |
12 | cvsca 15945 |
. . . . . . . . . . 11
![]() ![]() | |
13 | 11, 12 | cfv 5888 |
. . . . . . . . . 10
![]() ![]() ![]() ![]() ![]() ![]() |
14 | 7, 9, 13 | co 6650 |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
15 | cnm 22381 |
. . . . . . . . . 10
![]() ![]() | |
16 | 11, 15 | cfv 5888 |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() |
17 | 14, 16 | cfv 5888 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
18 | 3, 15 | cfv 5888 |
. . . . . . . . . 10
![]() ![]() ![]() ![]() ![]() ![]() |
19 | 7, 18 | cfv 5888 |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
20 | 9, 16 | cfv 5888 |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
21 | cmul 9941 |
. . . . . . . . 9
![]() ![]() | |
22 | 19, 20, 21 | co 6650 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
23 | 17, 22 | wceq 1483 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
24 | cbs 15857 |
. . . . . . . 8
![]() ![]() | |
25 | 11, 24 | cfv 5888 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() |
26 | 23, 8, 25 | wral 2912 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
27 | 3, 24 | cfv 5888 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() |
28 | 26, 6, 27 | wral 2912 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
29 | 5, 28 | wa 384 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
30 | csca 15944 |
. . . . 5
![]() | |
31 | 11, 30 | cfv 5888 |
. . . 4
![]() ![]() ![]() ![]() ![]() |
32 | 29, 2, 31 | wsbc 3435 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
33 | cngp 22382 |
. . . 4
![]() | |
34 | clmod 18863 |
. . . 4
![]() ![]() | |
35 | 33, 34 | cin 3573 |
. . 3
![]() ![]() ![]() ![]() ![]() |
36 | 32, 10, 35 | crab 2916 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
37 | 1, 36 | wceq 1483 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
This definition is referenced by: isnlm 22479 |
Copyright terms: Public domain | W3C validator |