MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-omul Structured version   Visualization version   Unicode version

Definition df-omul 7565
Description: Define the ordinal multiplication operation. (Contributed by NM, 26-Aug-1995.)
Assertion
Ref Expression
df-omul  |-  .o  =  ( x  e.  On ,  y  e.  On  |->  ( rec ( ( z  e.  _V  |->  ( z  +o  x ) ) ,  (/) ) `  y
) )
Distinct variable group:    x, y, z

Detailed syntax breakdown of Definition df-omul
StepHypRef Expression
1 comu 7558 . 2  class  .o
2 vx . . 3  setvar  x
3 vy . . 3  setvar  y
4 con0 5723 . . 3  class  On
53cv 1482 . . . 4  class  y
6 vz . . . . . 6  setvar  z
7 cvv 3200 . . . . . 6  class  _V
86cv 1482 . . . . . . 7  class  z
92cv 1482 . . . . . . 7  class  x
10 coa 7557 . . . . . . 7  class  +o
118, 9, 10co 6650 . . . . . 6  class  ( z  +o  x )
126, 7, 11cmpt 4729 . . . . 5  class  ( z  e.  _V  |->  ( z  +o  x ) )
13 c0 3915 . . . . 5  class  (/)
1412, 13crdg 7505 . . . 4  class  rec (
( z  e.  _V  |->  ( z  +o  x
) ) ,  (/) )
155, 14cfv 5888 . . 3  class  ( rec ( ( z  e. 
_V  |->  ( z  +o  x ) ) ,  (/) ) `  y )
162, 3, 4, 4, 15cmpt2 6652 . 2  class  ( x  e.  On ,  y  e.  On  |->  ( rec ( ( z  e. 
_V  |->  ( z  +o  x ) ) ,  (/) ) `  y ) )
171, 16wceq 1483 1  wff  .o  =  ( x  e.  On ,  y  e.  On  |->  ( rec ( ( z  e.  _V  |->  ( z  +o  x ) ) ,  (/) ) `  y
) )
Colors of variables: wff setvar class
This definition is referenced by:  fnom  7589  omv  7592
  Copyright terms: Public domain W3C validator