![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-pths | Structured version Visualization version Unicode version |
Description: Define the set of all
paths (in an undirected graph).
According to Wikipedia ("Path (graph theory)", https://en.wikipedia.org/wiki/Path_(graph_theory), 3-Oct-2017): "A path is a trail in which all vertices (except possibly the first and last) are distinct. ... use the term simple path to refer to a path which contains no repeated vertices." According to Bollobas: "... a path is a walk with distinct vertices.", see Notation of [Bollobas] p. 5. (A walk with distinct vertices is actually a simple path, see upgrwlkdvspth 26635). Therefore, a path can be represented by an injective mapping f from { 1 , ... , n } and a mapping p from { 0 , ... , n }, which is injective restricted to the set { 1 , ... , n }, where f enumerates the (indices of the) different edges, and p enumerates the vertices. So the path is also represented by the following sequence: p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n). (Contributed by Alexander van der Vekens and Mario Carneiro, 4-Oct-2017.) (Revised by AV, 9-Jan-2021.) |
Ref | Expression |
---|---|
df-pths |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cpths 26608 |
. 2
![]() | |
2 | vg |
. . 3
![]() ![]() | |
3 | cvv 3200 |
. . 3
![]() ![]() | |
4 | vf |
. . . . . . 7
![]() ![]() | |
5 | 4 | cv 1482 |
. . . . . 6
![]() ![]() |
6 | vp |
. . . . . . 7
![]() ![]() | |
7 | 6 | cv 1482 |
. . . . . 6
![]() ![]() |
8 | 2 | cv 1482 |
. . . . . . 7
![]() ![]() |
9 | ctrls 26587 |
. . . . . . 7
![]() | |
10 | 8, 9 | cfv 5888 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() |
11 | 5, 7, 10 | wbr 4653 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
12 | c1 9937 |
. . . . . . . . 9
![]() ![]() | |
13 | chash 13117 |
. . . . . . . . . 10
![]() ![]() | |
14 | 5, 13 | cfv 5888 |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() |
15 | cfzo 12465 |
. . . . . . . . 9
![]() | |
16 | 12, 14, 15 | co 6650 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
17 | 7, 16 | cres 5116 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
18 | 17 | ccnv 5113 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
19 | 18 | wfun 5882 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
20 | cc0 9936 |
. . . . . . . . 9
![]() ![]() | |
21 | 20, 14 | cpr 4179 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
22 | 7, 21 | cima 5117 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
23 | 7, 16 | cima 5117 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
24 | 22, 23 | cin 3573 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
25 | c0 3915 |
. . . . . 6
![]() ![]() | |
26 | 24, 25 | wceq 1483 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
27 | 11, 19, 26 | w3a 1037 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
28 | 27, 4, 6 | copab 4712 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
29 | 2, 3, 28 | cmpt 4729 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
30 | 1, 29 | wceq 1483 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
This definition is referenced by: relpths 26616 pthsfval 26617 |
Copyright terms: Public domain | W3C validator |