MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-pths Structured version   Visualization version   Unicode version

Definition df-pths 26612
Description: Define the set of all paths (in an undirected graph).

According to Wikipedia ("Path (graph theory)", https://en.wikipedia.org/wiki/Path_(graph_theory), 3-Oct-2017): "A path is a trail in which all vertices (except possibly the first and last) are distinct. ... use the term simple path to refer to a path which contains no repeated vertices."

According to Bollobas: "... a path is a walk with distinct vertices.", see Notation of [Bollobas] p. 5. (A walk with distinct vertices is actually a simple path, see upgrwlkdvspth 26635).

Therefore, a path can be represented by an injective mapping f from { 1 , ... , n } and a mapping p from { 0 , ... , n }, which is injective restricted to the set { 1 , ... , n }, where f enumerates the (indices of the) different edges, and p enumerates the vertices. So the path is also represented by the following sequence: p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n). (Contributed by Alexander van der Vekens and Mario Carneiro, 4-Oct-2017.) (Revised by AV, 9-Jan-2021.)

Assertion
Ref Expression
df-pths  |- Paths  =  ( g  e.  _V  |->  {
<. f ,  p >.  |  ( f (Trails `  g ) p  /\  Fun  `' ( p  |`  ( 1..^ ( # `  f
) ) )  /\  ( ( p " { 0 ,  (
# `  f ) } )  i^i  (
p " ( 1..^ ( # `  f
) ) ) )  =  (/) ) } )
Distinct variable group:    f, g, p

Detailed syntax breakdown of Definition df-pths
StepHypRef Expression
1 cpths 26608 . 2  class Paths
2 vg . . 3  setvar  g
3 cvv 3200 . . 3  class  _V
4 vf . . . . . . 7  setvar  f
54cv 1482 . . . . . 6  class  f
6 vp . . . . . . 7  setvar  p
76cv 1482 . . . . . 6  class  p
82cv 1482 . . . . . . 7  class  g
9 ctrls 26587 . . . . . . 7  class Trails
108, 9cfv 5888 . . . . . 6  class  (Trails `  g )
115, 7, 10wbr 4653 . . . . 5  wff  f (Trails `  g ) p
12 c1 9937 . . . . . . . . 9  class  1
13 chash 13117 . . . . . . . . . 10  class  #
145, 13cfv 5888 . . . . . . . . 9  class  ( # `  f )
15 cfzo 12465 . . . . . . . . 9  class ..^
1612, 14, 15co 6650 . . . . . . . 8  class  ( 1..^ ( # `  f
) )
177, 16cres 5116 . . . . . . 7  class  ( p  |`  ( 1..^ ( # `  f ) ) )
1817ccnv 5113 . . . . . 6  class  `' ( p  |`  ( 1..^ ( # `  f
) ) )
1918wfun 5882 . . . . 5  wff  Fun  `' ( p  |`  ( 1..^ ( # `  f
) ) )
20 cc0 9936 . . . . . . . . 9  class  0
2120, 14cpr 4179 . . . . . . . 8  class  { 0 ,  ( # `  f
) }
227, 21cima 5117 . . . . . . 7  class  ( p
" { 0 ,  ( # `  f
) } )
237, 16cima 5117 . . . . . . 7  class  ( p
" ( 1..^ (
# `  f )
) )
2422, 23cin 3573 . . . . . 6  class  ( ( p " { 0 ,  ( # `  f
) } )  i^i  ( p " (
1..^ ( # `  f
) ) ) )
25 c0 3915 . . . . . 6  class  (/)
2624, 25wceq 1483 . . . . 5  wff  ( ( p " { 0 ,  ( # `  f
) } )  i^i  ( p " (
1..^ ( # `  f
) ) ) )  =  (/)
2711, 19, 26w3a 1037 . . . 4  wff  ( f (Trails `  g )
p  /\  Fun  `' ( p  |`  ( 1..^ ( # `  f
) ) )  /\  ( ( p " { 0 ,  (
# `  f ) } )  i^i  (
p " ( 1..^ ( # `  f
) ) ) )  =  (/) )
2827, 4, 6copab 4712 . . 3  class  { <. f ,  p >.  |  ( f (Trails `  g
) p  /\  Fun  `' ( p  |`  (
1..^ ( # `  f
) ) )  /\  ( ( p " { 0 ,  (
# `  f ) } )  i^i  (
p " ( 1..^ ( # `  f
) ) ) )  =  (/) ) }
292, 3, 28cmpt 4729 . 2  class  ( g  e.  _V  |->  { <. f ,  p >.  |  ( f (Trails `  g
) p  /\  Fun  `' ( p  |`  (
1..^ ( # `  f
) ) )  /\  ( ( p " { 0 ,  (
# `  f ) } )  i^i  (
p " ( 1..^ ( # `  f
) ) ) )  =  (/) ) } )
301, 29wceq 1483 1  wff Paths  =  ( g  e.  _V  |->  {
<. f ,  p >.  |  ( f (Trails `  g ) p  /\  Fun  `' ( p  |`  ( 1..^ ( # `  f
) ) )  /\  ( ( p " { 0 ,  (
# `  f ) } )  i^i  (
p " ( 1..^ ( # `  f
) ) ) )  =  (/) ) } )
Colors of variables: wff setvar class
This definition is referenced by:  relpths  26616  pthsfval  26617
  Copyright terms: Public domain W3C validator