![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-q1p | Structured version Visualization version Unicode version |
Description: Define the quotient of two univariate polynomials, which is guaranteed to exist and be unique by ply1divalg 23897. We actually use the reversed version for better harmony with our divisibility df-dvdsr 18641. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
Ref | Expression |
---|---|
df-q1p |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cq1p 23887 |
. 2
![]() | |
2 | vr |
. . 3
![]() ![]() | |
3 | cvv 3200 |
. . 3
![]() ![]() | |
4 | vp |
. . . 4
![]() ![]() | |
5 | 2 | cv 1482 |
. . . . 5
![]() ![]() |
6 | cpl1 19547 |
. . . . 5
![]() | |
7 | 5, 6 | cfv 5888 |
. . . 4
![]() ![]() ![]() ![]() ![]() |
8 | vb |
. . . . 5
![]() ![]() | |
9 | 4 | cv 1482 |
. . . . . 6
![]() ![]() |
10 | cbs 15857 |
. . . . . 6
![]() ![]() | |
11 | 9, 10 | cfv 5888 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() |
12 | vf |
. . . . . 6
![]() ![]() | |
13 | vg |
. . . . . 6
![]() ![]() | |
14 | 8 | cv 1482 |
. . . . . 6
![]() ![]() |
15 | 12 | cv 1482 |
. . . . . . . . . 10
![]() ![]() |
16 | vq |
. . . . . . . . . . . 12
![]() ![]() | |
17 | 16 | cv 1482 |
. . . . . . . . . . 11
![]() ![]() |
18 | 13 | cv 1482 |
. . . . . . . . . . 11
![]() ![]() |
19 | cmulr 15942 |
. . . . . . . . . . . 12
![]() ![]() | |
20 | 9, 19 | cfv 5888 |
. . . . . . . . . . 11
![]() ![]() ![]() ![]() ![]() ![]() |
21 | 17, 18, 20 | co 6650 |
. . . . . . . . . 10
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
22 | csg 17424 |
. . . . . . . . . . 11
![]() ![]() | |
23 | 9, 22 | cfv 5888 |
. . . . . . . . . 10
![]() ![]() ![]() ![]() ![]() ![]() |
24 | 15, 21, 23 | co 6650 |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
25 | cdg1 23814 |
. . . . . . . . . 10
![]() | |
26 | 5, 25 | cfv 5888 |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() |
27 | 24, 26 | cfv 5888 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
28 | 18, 26 | cfv 5888 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
29 | clt 10074 |
. . . . . . . 8
![]() ![]() | |
30 | 27, 28, 29 | wbr 4653 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
31 | 30, 16, 14 | crio 6610 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
32 | 12, 13, 14, 14, 31 | cmpt2 6652 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
33 | 8, 11, 32 | csb 3533 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
34 | 4, 7, 33 | csb 3533 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
35 | 2, 3, 34 | cmpt 4729 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
36 | 1, 35 | wceq 1483 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
This definition is referenced by: q1pval 23913 |
Copyright terms: Public domain | W3C validator |