![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-scmatalt | Structured version Visualization version Unicode version |
Description: Define the algebra of n x n scalar matrices over a set (usually a ring) r, see definition in [Connell] p. 57: "A scalar matrix is a diagonal matrix for which all the diagonal terms are equal, i.e., a matrix of the form cIn". (Contributed by AV, 8-Dec-2019.) |
Ref | Expression |
---|---|
df-scmatalt |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cscmatalt 42186 |
. 2
![]() | |
2 | vn |
. . 3
![]() ![]() | |
3 | vr |
. . 3
![]() ![]() | |
4 | cfn 7955 |
. . 3
![]() ![]() | |
5 | cvv 3200 |
. . 3
![]() ![]() | |
6 | va |
. . . 4
![]() ![]() | |
7 | 2 | cv 1482 |
. . . . 5
![]() ![]() |
8 | 3 | cv 1482 |
. . . . 5
![]() ![]() |
9 | cmat 20213 |
. . . . 5
![]() | |
10 | 7, 8, 9 | co 6650 |
. . . 4
![]() ![]() ![]() ![]() ![]() |
11 | 6 | cv 1482 |
. . . . 5
![]() ![]() |
12 | vi |
. . . . . . . . . . . 12
![]() ![]() | |
13 | 12 | cv 1482 |
. . . . . . . . . . 11
![]() ![]() |
14 | vj |
. . . . . . . . . . . 12
![]() ![]() | |
15 | 14 | cv 1482 |
. . . . . . . . . . 11
![]() ![]() |
16 | vm |
. . . . . . . . . . . 12
![]() ![]() | |
17 | 16 | cv 1482 |
. . . . . . . . . . 11
![]() ![]() |
18 | 13, 15, 17 | co 6650 |
. . . . . . . . . 10
![]() ![]() ![]() ![]() ![]() ![]() |
19 | 12, 14 | weq 1874 |
. . . . . . . . . . 11
![]() ![]() ![]() ![]() |
20 | vc |
. . . . . . . . . . . 12
![]() ![]() | |
21 | 20 | cv 1482 |
. . . . . . . . . . 11
![]() ![]() |
22 | c0g 16100 |
. . . . . . . . . . . 12
![]() ![]() | |
23 | 8, 22 | cfv 5888 |
. . . . . . . . . . 11
![]() ![]() ![]() ![]() ![]() ![]() |
24 | 19, 21, 23 | cif 4086 |
. . . . . . . . . 10
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
25 | 18, 24 | wceq 1483 |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
26 | 25, 14, 7 | wral 2912 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
27 | 26, 12, 7 | wral 2912 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
28 | cbs 15857 |
. . . . . . . 8
![]() ![]() | |
29 | 8, 28 | cfv 5888 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() |
30 | 27, 20, 29 | wrex 2913 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
31 | 11, 28 | cfv 5888 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() |
32 | 30, 16, 31 | crab 2916 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
33 | cress 15858 |
. . . . 5
![]() | |
34 | 11, 32, 33 | co 6650 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
35 | 6, 10, 34 | csb 3533 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
36 | 2, 3, 4, 5, 35 | cmpt2 6652 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
37 | 1, 36 | wceq 1483 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
This definition is referenced by: (None) |
Copyright terms: Public domain | W3C validator |