| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-sra | Structured version Visualization version Unicode version | ||
| Description: Given any subring of a ring, we can construct a left-algebra by regarding the elements of the subring as scalars and the ring itself as a set of vectors. (Contributed by Mario Carneiro, 27-Nov-2014.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
| Ref | Expression |
|---|---|
| df-sra |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csra 19168 |
. 2
| |
| 2 | vw |
. . 3
| |
| 3 | cvv 3200 |
. . 3
| |
| 4 | vs |
. . . 4
| |
| 5 | 2 | cv 1482 |
. . . . . 6
|
| 6 | cbs 15857 |
. . . . . 6
| |
| 7 | 5, 6 | cfv 5888 |
. . . . 5
|
| 8 | 7 | cpw 4158 |
. . . 4
|
| 9 | cnx 15854 |
. . . . . . . . 9
| |
| 10 | csca 15944 |
. . . . . . . . 9
| |
| 11 | 9, 10 | cfv 5888 |
. . . . . . . 8
|
| 12 | 4 | cv 1482 |
. . . . . . . . 9
|
| 13 | cress 15858 |
. . . . . . . . 9
| |
| 14 | 5, 12, 13 | co 6650 |
. . . . . . . 8
|
| 15 | 11, 14 | cop 4183 |
. . . . . . 7
|
| 16 | csts 15855 |
. . . . . . 7
| |
| 17 | 5, 15, 16 | co 6650 |
. . . . . 6
|
| 18 | cvsca 15945 |
. . . . . . . 8
| |
| 19 | 9, 18 | cfv 5888 |
. . . . . . 7
|
| 20 | cmulr 15942 |
. . . . . . . 8
| |
| 21 | 5, 20 | cfv 5888 |
. . . . . . 7
|
| 22 | 19, 21 | cop 4183 |
. . . . . 6
|
| 23 | 17, 22, 16 | co 6650 |
. . . . 5
|
| 24 | cip 15946 |
. . . . . . 7
| |
| 25 | 9, 24 | cfv 5888 |
. . . . . 6
|
| 26 | 25, 21 | cop 4183 |
. . . . 5
|
| 27 | 23, 26, 16 | co 6650 |
. . . 4
|
| 28 | 4, 8, 27 | cmpt 4729 |
. . 3
|
| 29 | 2, 3, 28 | cmpt 4729 |
. 2
|
| 30 | 1, 29 | wceq 1483 |
1
|
| Colors of variables: wff setvar class |
| This definition is referenced by: sraval 19176 |
| Copyright terms: Public domain | W3C validator |