MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-trlson Structured version   Visualization version   Unicode version

Definition df-trlson 26590
Description: Define the collection of trails with particular endpoints (in an undirected graph). (Contributed by Alexander van der Vekens and Mario Carneiro, 4-Oct-2017.) (Revised by AV, 28-Dec-2020.)
Assertion
Ref Expression
df-trlson  |- TrailsOn  =  ( g  e.  _V  |->  ( a  e.  (Vtx `  g ) ,  b  e.  (Vtx `  g
)  |->  { <. f ,  p >.  |  (
f ( a (WalksOn `  g ) b ) p  /\  f (Trails `  g ) p ) } ) )
Distinct variable groups:    f, g, p    a, b, f, g, p

Detailed syntax breakdown of Definition df-trlson
StepHypRef Expression
1 ctrlson 26588 . 2  class TrailsOn
2 vg . . 3  setvar  g
3 cvv 3200 . . 3  class  _V
4 va . . . 4  setvar  a
5 vb . . . 4  setvar  b
62cv 1482 . . . . 5  class  g
7 cvtx 25874 . . . . 5  class Vtx
86, 7cfv 5888 . . . 4  class  (Vtx `  g )
9 vf . . . . . . . 8  setvar  f
109cv 1482 . . . . . . 7  class  f
11 vp . . . . . . . 8  setvar  p
1211cv 1482 . . . . . . 7  class  p
134cv 1482 . . . . . . . 8  class  a
145cv 1482 . . . . . . . 8  class  b
15 cwlkson 26493 . . . . . . . . 9  class WalksOn
166, 15cfv 5888 . . . . . . . 8  class  (WalksOn `  g
)
1713, 14, 16co 6650 . . . . . . 7  class  ( a (WalksOn `  g )
b )
1810, 12, 17wbr 4653 . . . . . 6  wff  f ( a (WalksOn `  g
) b ) p
19 ctrls 26587 . . . . . . . 8  class Trails
206, 19cfv 5888 . . . . . . 7  class  (Trails `  g )
2110, 12, 20wbr 4653 . . . . . 6  wff  f (Trails `  g ) p
2218, 21wa 384 . . . . 5  wff  ( f ( a (WalksOn `  g
) b ) p  /\  f (Trails `  g ) p )
2322, 9, 11copab 4712 . . . 4  class  { <. f ,  p >.  |  ( f ( a (WalksOn `  g ) b ) p  /\  f (Trails `  g ) p ) }
244, 5, 8, 8, 23cmpt2 6652 . . 3  class  ( a  e.  (Vtx `  g
) ,  b  e.  (Vtx `  g )  |->  { <. f ,  p >.  |  ( f ( a (WalksOn `  g
) b ) p  /\  f (Trails `  g ) p ) } )
252, 3, 24cmpt 4729 . 2  class  ( g  e.  _V  |->  ( a  e.  (Vtx `  g
) ,  b  e.  (Vtx `  g )  |->  { <. f ,  p >.  |  ( f ( a (WalksOn `  g
) b ) p  /\  f (Trails `  g ) p ) } ) )
261, 25wceq 1483 1  wff TrailsOn  =  ( g  e.  _V  |->  ( a  e.  (Vtx `  g ) ,  b  e.  (Vtx `  g
)  |->  { <. f ,  p >.  |  (
f ( a (WalksOn `  g ) b ) p  /\  f (Trails `  g ) p ) } ) )
Colors of variables: wff setvar class
This definition is referenced by:  trlsonfval  26602  trlsonprop  26604
  Copyright terms: Public domain W3C validator