| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-tsr | Structured version Visualization version Unicode version | ||
| Description: Define the class of all totally ordered sets. (Contributed by FL, 1-Nov-2009.) |
| Ref | Expression |
|---|---|
| df-tsr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ctsr 17199 |
. 2
| |
| 2 | vr |
. . . . . . 7
| |
| 3 | 2 | cv 1482 |
. . . . . 6
|
| 4 | 3 | cdm 5114 |
. . . . 5
|
| 5 | 4, 4 | cxp 5112 |
. . . 4
|
| 6 | 3 | ccnv 5113 |
. . . . 5
|
| 7 | 3, 6 | cun 3572 |
. . . 4
|
| 8 | 5, 7 | wss 3574 |
. . 3
|
| 9 | cps 17198 |
. . 3
| |
| 10 | 8, 2, 9 | crab 2916 |
. 2
|
| 11 | 1, 10 | wceq 1483 |
1
|
| Colors of variables: wff setvar class |
| This definition is referenced by: istsr 17217 |
| Copyright terms: Public domain | W3C validator |