MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-upgr Structured version   Visualization version   Unicode version

Definition df-upgr 25977
Description: Define the class of all undirected pseudographs. An (undirected) pseudograph consists of a set 
v (of "vertices") and a function  e (representing indexed "edges") into subsets of  v of cardinality one or two, representing the two vertices incident to the edge, or the one vertex if the edge is a loop. This is according to Chartrand, Gary and Zhang, Ping (2012): "A First Course in Graph Theory.", Dover, ISBN 978-0-486-48368-9, section 1.4, p. 26: "In a pseudograph, not only are parallel edges permitted but an edge is also permitted to join a vertex to itself. Such an edge is called a loop." (in contrast to a multigraph, see df-umgr 25978). (Contributed by Mario Carneiro, 11-Mar-2015.) (Revised by AV, 24-Nov-2020.)
Assertion
Ref Expression
df-upgr  |- UPGraph  =  {
g  |  [. (Vtx `  g )  /  v ]. [. (iEdg `  g
)  /  e ]. e : dom  e --> { x  e.  ( ~P v  \  { (/) } )  |  ( # `  x )  <_  2 } }
Distinct variable group:    e, g, v, x

Detailed syntax breakdown of Definition df-upgr
StepHypRef Expression
1 cupgr 25975 . 2  class UPGraph
2 ve . . . . . . . 8  setvar  e
32cv 1482 . . . . . . 7  class  e
43cdm 5114 . . . . . 6  class  dom  e
5 vx . . . . . . . . . 10  setvar  x
65cv 1482 . . . . . . . . 9  class  x
7 chash 13117 . . . . . . . . 9  class  #
86, 7cfv 5888 . . . . . . . 8  class  ( # `  x )
9 c2 11070 . . . . . . . 8  class  2
10 cle 10075 . . . . . . . 8  class  <_
118, 9, 10wbr 4653 . . . . . . 7  wff  ( # `  x )  <_  2
12 vv . . . . . . . . . 10  setvar  v
1312cv 1482 . . . . . . . . 9  class  v
1413cpw 4158 . . . . . . . 8  class  ~P v
15 c0 3915 . . . . . . . . 9  class  (/)
1615csn 4177 . . . . . . . 8  class  { (/) }
1714, 16cdif 3571 . . . . . . 7  class  ( ~P v  \  { (/) } )
1811, 5, 17crab 2916 . . . . . 6  class  { x  e.  ( ~P v  \  { (/) } )  |  ( # `  x
)  <_  2 }
194, 18, 3wf 5884 . . . . 5  wff  e : dom  e --> { x  e.  ( ~P v  \  { (/) } )  |  ( # `  x
)  <_  2 }
20 vg . . . . . . 7  setvar  g
2120cv 1482 . . . . . 6  class  g
22 ciedg 25875 . . . . . 6  class iEdg
2321, 22cfv 5888 . . . . 5  class  (iEdg `  g )
2419, 2, 23wsbc 3435 . . . 4  wff  [. (iEdg `  g )  /  e ]. e : dom  e --> { x  e.  ( ~P v  \  { (/) } )  |  ( # `  x )  <_  2 }
25 cvtx 25874 . . . . 5  class Vtx
2621, 25cfv 5888 . . . 4  class  (Vtx `  g )
2724, 12, 26wsbc 3435 . . 3  wff  [. (Vtx `  g )  /  v ]. [. (iEdg `  g
)  /  e ]. e : dom  e --> { x  e.  ( ~P v  \  { (/) } )  |  ( # `  x )  <_  2 }
2827, 20cab 2608 . 2  class  { g  |  [. (Vtx `  g )  /  v ]. [. (iEdg `  g
)  /  e ]. e : dom  e --> { x  e.  ( ~P v  \  { (/) } )  |  ( # `  x )  <_  2 } }
291, 28wceq 1483 1  wff UPGraph  =  {
g  |  [. (Vtx `  g )  /  v ]. [. (iEdg `  g
)  /  e ]. e : dom  e --> { x  e.  ( ~P v  \  { (/) } )  |  ( # `  x )  <_  2 } }
Colors of variables: wff setvar class
This definition is referenced by:  isupgr  25979
  Copyright terms: Public domain W3C validator