MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-xneg Structured version   Visualization version   Unicode version

Definition df-xneg 11946
Description: Define the negative of an extended real number. (Contributed by FL, 26-Dec-2011.)
Assertion
Ref Expression
df-xneg  |-  -e
A  =  if ( A  = +oo , -oo ,  if ( A  = -oo , +oo ,  -u A ) )

Detailed syntax breakdown of Definition df-xneg
StepHypRef Expression
1 cA . . 3  class  A
21cxne 11943 . 2  class  -e
A
3 cpnf 10071 . . . 4  class +oo
41, 3wceq 1483 . . 3  wff  A  = +oo
5 cmnf 10072 . . 3  class -oo
61, 5wceq 1483 . . . 4  wff  A  = -oo
71cneg 10267 . . . 4  class  -u A
86, 3, 7cif 4086 . . 3  class  if ( A  = -oo , +oo ,  -u A )
94, 5, 8cif 4086 . 2  class  if ( A  = +oo , -oo ,  if ( A  = -oo , +oo ,  -u A ) )
102, 9wceq 1483 1  wff  -e
A  =  if ( A  = +oo , -oo ,  if ( A  = -oo , +oo ,  -u A ) )
Colors of variables: wff setvar class
This definition is referenced by:  xnegeq  12038  xnegex  12039  xnegpnf  12040  xnegmnf  12041  rexneg  12042  nfxnegd  39668
  Copyright terms: Public domain W3C validator