| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-xneg | Structured version Visualization version Unicode version | ||
| Description: Define the negative of an extended real number. (Contributed by FL, 26-Dec-2011.) |
| Ref | Expression |
|---|---|
| df-xneg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA |
. . 3
| |
| 2 | 1 | cxne 11943 |
. 2
|
| 3 | cpnf 10071 |
. . . 4
| |
| 4 | 1, 3 | wceq 1483 |
. . 3
|
| 5 | cmnf 10072 |
. . 3
| |
| 6 | 1, 5 | wceq 1483 |
. . . 4
|
| 7 | 1 | cneg 10267 |
. . . 4
|
| 8 | 6, 3, 7 | cif 4086 |
. . 3
|
| 9 | 4, 5, 8 | cif 4086 |
. 2
|
| 10 | 2, 9 | wceq 1483 |
1
|
| Colors of variables: wff setvar class |
| This definition is referenced by: xnegeq 12038 xnegex 12039 xnegpnf 12040 xnegmnf 12041 rexneg 12042 nfxnegd 39668 |
| Copyright terms: Public domain | W3C validator |