| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-yon | Structured version Visualization version Unicode version | ||
| Description: Define the Yoneda embedding, which is the currying of the (opposite) Hom functor. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| Ref | Expression |
|---|---|
| df-yon |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cyon 16889 |
. 2
| |
| 2 | vc |
. . 3
| |
| 3 | ccat 16325 |
. . 3
| |
| 4 | 2 | cv 1482 |
. . . . 5
|
| 5 | coppc 16371 |
. . . . . 6
| |
| 6 | 4, 5 | cfv 5888 |
. . . . 5
|
| 7 | 4, 6 | cop 4183 |
. . . 4
|
| 8 | chof 16888 |
. . . . 5
| |
| 9 | 6, 8 | cfv 5888 |
. . . 4
|
| 10 | ccurf 16850 |
. . . 4
| |
| 11 | 7, 9, 10 | co 6650 |
. . 3
|
| 12 | 2, 3, 11 | cmpt 4729 |
. 2
|
| 13 | 1, 12 | wceq 1483 |
1
|
| Colors of variables: wff setvar class |
| This definition is referenced by: yonval 16901 |
| Copyright terms: Public domain | W3C validator |