Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfxor4 Structured version   Visualization version   Unicode version

Theorem dfxor4 38058
Description: Express exclusive-or in terms of implication and negation. Statement in [Frege1879] p. 12. (Contributed by RP, 14-Apr-2020.)
Assertion
Ref Expression
dfxor4  |-  ( (
ph  \/_  ps )  <->  -.  ( ( -.  ph  ->  ps )  ->  -.  ( ph  ->  -.  ps )
) )

Proof of Theorem dfxor4
StepHypRef Expression
1 xor2 1470 . 2  |-  ( (
ph  \/_  ps )  <->  ( ( ph  \/  ps )  /\  -.  ( ph  /\ 
ps ) ) )
2 df-or 385 . . 3  |-  ( (
ph  \/  ps )  <->  ( -.  ph  ->  ps )
)
3 imnan 438 . . . 4  |-  ( (
ph  ->  -.  ps )  <->  -.  ( ph  /\  ps ) )
43bicomi 214 . . 3  |-  ( -.  ( ph  /\  ps ) 
<->  ( ph  ->  -.  ps ) )
52, 4anbi12i 733 . 2  |-  ( ( ( ph  \/  ps )  /\  -.  ( ph  /\ 
ps ) )  <->  ( ( -.  ph  ->  ps )  /\  ( ph  ->  -.  ps ) ) )
6 df-an 386 . 2  |-  ( ( ( -.  ph  ->  ps )  /\  ( ph  ->  -.  ps ) )  <->  -.  ( ( -.  ph  ->  ps )  ->  -.  ( ph  ->  -.  ps )
) )
71, 5, 63bitri 286 1  |-  ( (
ph  \/_  ps )  <->  -.  ( ( -.  ph  ->  ps )  ->  -.  ( ph  ->  -.  ps )
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    \/_ wxo 1464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-xor 1465
This theorem is referenced by:  dfxor5  38059
  Copyright terms: Public domain W3C validator