Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ee13 Structured version   Visualization version   Unicode version

Theorem ee13 38710
Description: e13 38975 without virtual deduction connectives. Special theorem needed for the Virtual Deduction translation tool. (Contributed by Alan Sare, 28-Oct-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
ee13.1  |-  ( ph  ->  ps )
ee13.2  |-  ( ph  ->  ( ch  ->  ( th  ->  ta ) ) )
ee13.3  |-  ( ps 
->  ( ta  ->  et ) )
Assertion
Ref Expression
ee13  |-  ( ph  ->  ( ch  ->  ( th  ->  et ) ) )

Proof of Theorem ee13
StepHypRef Expression
1 ee13.2 . 2  |-  ( ph  ->  ( ch  ->  ( th  ->  ta ) ) )
2 ee13.1 . . 3  |-  ( ph  ->  ps )
3 ee13.3 . . 3  |-  ( ps 
->  ( ta  ->  et ) )
42, 3syl 17 . 2  |-  ( ph  ->  ( ta  ->  et ) )
51, 4syl6d 75 1  |-  ( ph  ->  ( ch  ->  ( th  ->  et ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  sbcim2g  38748  ee13an  38977
  Copyright terms: Public domain W3C validator