MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-natded5.3i Structured version   Visualization version   Unicode version

Theorem ex-natded5.3i 27266
Description: The same as ex-natded5.3 27264 and ex-natded5.3-2 27265 but with no context. Identical to jccir 562, which should be used instead. (Contributed by Mario Carneiro, 9-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
ex-natded5.3i.1  |-  ( ps 
->  ch )
ex-natded5.3i.2  |-  ( ch 
->  th )
Assertion
Ref Expression
ex-natded5.3i  |-  ( ps 
->  ( ch  /\  th ) )

Proof of Theorem ex-natded5.3i
StepHypRef Expression
1 ex-natded5.3i.1 . 2  |-  ( ps 
->  ch )
2 ex-natded5.3i.2 . . 3  |-  ( ch 
->  th )
31, 2syl 17 . 2  |-  ( ps 
->  th )
41, 3jca 554 1  |-  ( ps 
->  ( ch  /\  th ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 386
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator