Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege10 Structured version   Visualization version   Unicode version

Theorem frege10 38114
Description: Result commuting antecedents within an antecedent. Proposition 10 of [Frege1879] p. 36. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
frege10  |-  ( ( ( ph  ->  ( ps  ->  ch ) )  ->  th )  ->  (
( ps  ->  ( ph  ->  ch ) )  ->  th ) )

Proof of Theorem frege10
StepHypRef Expression
1 ax-frege8 38103 . 2  |-  ( ( ps  ->  ( ph  ->  ch ) )  -> 
( ph  ->  ( ps 
->  ch ) ) )
2 frege9 38106 . 2  |-  ( ( ( ps  ->  ( ph  ->  ch ) )  ->  ( ph  ->  ( ps  ->  ch )
) )  ->  (
( ( ph  ->  ( ps  ->  ch )
)  ->  th )  ->  ( ( ps  ->  (
ph  ->  ch ) )  ->  th ) ) )
31, 2ax-mp 5 1  |-  ( ( ( ph  ->  ( ps  ->  ch ) )  ->  th )  ->  (
( ps  ->  ( ph  ->  ch ) )  ->  th ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-frege1 38084  ax-frege2 38085  ax-frege8 38103
This theorem is referenced by:  frege30  38126
  Copyright terms: Public domain W3C validator