Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege34 Structured version   Visualization version   Unicode version

Theorem frege34 38131
Description: If as a conseqence of the occurence of the circumstance 
ph, when the obstacle  ps is removed,  ch takes place, then from the circumstance that  ch does not take place while  ph occurs the occurence of the obstacle  ps can be inferred. Closed form of con1d 139. Proposition 34 of [Frege1879] p. 45. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
frege34  |-  ( (
ph  ->  ( -.  ps  ->  ch ) )  -> 
( ph  ->  ( -. 
ch  ->  ps ) ) )

Proof of Theorem frege34
StepHypRef Expression
1 frege33 38130 . 2  |-  ( ( -.  ps  ->  ch )  ->  ( -.  ch  ->  ps ) )
2 frege5 38094 . 2  |-  ( ( ( -.  ps  ->  ch )  ->  ( -.  ch  ->  ps ) )  ->  ( ( ph  ->  ( -.  ps  ->  ch ) )  ->  ( ph  ->  ( -.  ch  ->  ps ) ) ) )
31, 2ax-mp 5 1  |-  ( (
ph  ->  ( -.  ps  ->  ch ) )  -> 
( ph  ->  ( -. 
ch  ->  ps ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-frege1 38084  ax-frege2 38085  ax-frege28 38124  ax-frege31 38128
This theorem is referenced by:  frege35  38132  frege36  38133
  Copyright terms: Public domain W3C validator