Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege67b Structured version   Visualization version   Unicode version

Theorem frege67b 38206
Description: Lemma for frege68b 38207. Proposition 67 of [Frege1879] p. 54. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
frege67b  |-  ( ( ( A. x ph  <->  ps )  ->  ( ps  ->  A. x ph )
)  ->  ( ( A. x ph  <->  ps )  ->  ( ps  ->  [ y  /  x ] ph ) ) )

Proof of Theorem frege67b
StepHypRef Expression
1 ax-frege58b 38195 . 2  |-  ( A. x ph  ->  [ y  /  x ] ph )
2 frege7 38102 . 2  |-  ( ( A. x ph  ->  [ y  /  x ] ph )  ->  ( ( ( A. x ph  <->  ps )  ->  ( ps  ->  A. x ph )
)  ->  ( ( A. x ph  <->  ps )  ->  ( ps  ->  [ y  /  x ] ph ) ) ) )
31, 2ax-mp 5 1  |-  ( ( ( A. x ph  <->  ps )  ->  ( ps  ->  A. x ph )
)  ->  ( ( A. x ph  <->  ps )  ->  ( ps  ->  [ y  /  x ] ph ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196   A.wal 1481   [wsb 1880
This theorem was proved from axioms:  ax-mp 5  ax-frege1 38084  ax-frege2 38085  ax-frege58b 38195
This theorem is referenced by:  frege68b  38207
  Copyright terms: Public domain W3C validator