MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imimorb Structured version   Visualization version   Unicode version

Theorem imimorb 921
Description: Simplify an implication between implications. (Contributed by Paul Chapman, 17-Nov-2012.) (Proof shortened by Wolf Lammen, 3-Apr-2013.)
Assertion
Ref Expression
imimorb  |-  ( ( ( ps  ->  ch )  ->  ( ph  ->  ch ) )  <->  ( ph  ->  ( ps  \/  ch ) ) )

Proof of Theorem imimorb
StepHypRef Expression
1 bi2.04 376 . 2  |-  ( ( ( ps  ->  ch )  ->  ( ph  ->  ch ) )  <->  ( ph  ->  ( ( ps  ->  ch )  ->  ch )
) )
2 dfor2 427 . . 3  |-  ( ( ps  \/  ch )  <->  ( ( ps  ->  ch )  ->  ch ) )
32imbi2i 326 . 2  |-  ( (
ph  ->  ( ps  \/  ch ) )  <->  ( ph  ->  ( ( ps  ->  ch )  ->  ch )
) )
41, 3bitr4i 267 1  |-  ( ( ( ps  ->  ch )  ->  ( ph  ->  ch ) )  <->  ( ph  ->  ( ps  \/  ch ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-or 385
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator