MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imp4aOLD Structured version   Visualization version   Unicode version

Theorem imp4aOLD 615
Description: Obsolete proof of imp4a 614 as of 19-Jul-2021. (Contributed by NM, 26-Apr-1994.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
imp4.1  |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ta ) ) ) )
Assertion
Ref Expression
imp4aOLD  |-  ( ph  ->  ( ps  ->  (
( ch  /\  th )  ->  ta ) ) )

Proof of Theorem imp4aOLD
StepHypRef Expression
1 imp4.1 . 2  |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ta ) ) ) )
2 impexp 462 . 2  |-  ( ( ( ch  /\  th )  ->  ta )  <->  ( ch  ->  ( th  ->  ta ) ) )
31, 2syl6ibr 242 1  |-  ( ph  ->  ( ps  ->  (
( ch  /\  th )  ->  ta ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 386
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator