MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inegd Structured version   Visualization version   Unicode version

Theorem inegd 1503
Description: Negation introduction rule from natural deduction. (Contributed by Mario Carneiro, 9-Feb-2017.)
Hypothesis
Ref Expression
inegd.1  |-  ( (
ph  /\  ps )  -> F.  )
Assertion
Ref Expression
inegd  |-  ( ph  ->  -.  ps )

Proof of Theorem inegd
StepHypRef Expression
1 inegd.1 . . 3  |-  ( (
ph  /\  ps )  -> F.  )
21ex 450 . 2  |-  ( ph  ->  ( ps  -> F.  ) )
3 dfnot 1502 . 2  |-  ( -. 
ps 
<->  ( ps  -> F.  ) )
42, 3sylibr 224 1  |-  ( ph  ->  -.  ps )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384   F. wfal 1488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 386  df-tru 1486  df-fal 1489
This theorem is referenced by:  efald  1504  tglndim0  25524  archiabllem2c  29749
  Copyright terms: Public domain W3C validator