| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > minimp-sylsimp | Structured version Visualization version Unicode version | ||
| Description: Derivation of sylsimp (jarr 106) from ax-mp 5 and minimp 1560. (Contributed by BJ, 4-Apr-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| minimp-sylsimp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | minimp 1560 |
. . 3
| |
| 2 | minimp 1560 |
. . . 4
| |
| 3 | minimp 1560 |
. . . 4
| |
| 4 | 2, 3 | ax-mp 5 |
. . 3
|
| 5 | minimp 1560 |
. . . 4
| |
| 6 | minimp 1560 |
. . . 4
| |
| 7 | minimp 1560 |
. . . 4
| |
| 8 | 5, 6, 7 | mp2 9 |
. . 3
|
| 9 | 1, 4, 8 | mp2b 10 |
. 2
|
| 10 | minimp 1560 |
. . 3
| |
| 11 | minimp 1560 |
. . 3
| |
| 12 | minimp 1560 |
. . . 4
| |
| 13 | minimp 1560 |
. . . 4
| |
| 14 | minimp 1560 |
. . . 4
| |
| 15 | 12, 13, 14 | mp2 9 |
. . 3
|
| 16 | 10, 11, 15 | mp2b 10 |
. 2
|
| 17 | minimp 1560 |
. . 3
| |
| 18 | minimp 1560 |
. . 3
| |
| 19 | minimp 1560 |
. . . 4
| |
| 20 | minimp 1560 |
. . . 4
| |
| 21 | minimp 1560 |
. . . 4
| |
| 22 | 19, 20, 21 | mp2 9 |
. . 3
|
| 23 | 17, 18, 22 | mp2b 10 |
. 2
|
| 24 | 9, 16, 23 | mp2b 10 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: minimp-ax1 1562 minimp-ax2c 1563 minimp-ax2 1564 |
| Copyright terms: Public domain | W3C validator |