MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nf2 Structured version   Visualization version   Unicode version

Theorem nf2 1711
Description: Alternate definition of non-freeness. (Contributed by BJ, 16-Sep-2021.)
Assertion
Ref Expression
nf2  |-  ( F/ x ph  <->  ( A. x ph  \/  -.  E. x ph ) )

Proof of Theorem nf2
StepHypRef Expression
1 df-nf 1710 . 2  |-  ( F/ x ph  <->  ( E. x ph  ->  A. x ph ) )
2 imor 428 . 2  |-  ( ( E. x ph  ->  A. x ph )  <->  ( -.  E. x ph  \/  A. x ph ) )
3 orcom 402 . 2  |-  ( ( -.  E. x ph  \/  A. x ph )  <->  ( A. x ph  \/  -.  E. x ph )
)
41, 2, 33bitri 286 1  |-  ( F/ x ph  <->  ( A. x ph  \/  -.  E. x ph ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383   A.wal 1481   E.wex 1704   F/wnf 1708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-or 385  df-nf 1710
This theorem is referenced by:  nf3  1712  nfntht  1719
  Copyright terms: Public domain W3C validator