MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfd Structured version   Visualization version   Unicode version

Theorem nfd 1716
Description: Deduce that  x is not free in  ps in a context. (Contributed by Wolf Lammen, 16-Sep-2021.)
Hypothesis
Ref Expression
nfd.1  |-  ( ph  ->  ( E. x ps 
->  A. x ps )
)
Assertion
Ref Expression
nfd  |-  ( ph  ->  F/ x ps )

Proof of Theorem nfd
StepHypRef Expression
1 nfd.1 . 2  |-  ( ph  ->  ( E. x ps 
->  A. x ps )
)
2 df-nf 1710 . 2  |-  ( F/ x ps  <->  ( E. x ps  ->  A. x ps ) )
31, 2sylibr 224 1  |-  ( ph  ->  F/ x ps )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   A.wal 1481   E.wex 1704   F/wnf 1708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-nf 1710
This theorem is referenced by:  nfimdOLDOLD  1824  nf5-1  2023  axc16nf  2137  nfald  2165
  Copyright terms: Public domain W3C validator