Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  or3dir Structured version   Visualization version   Unicode version

Theorem or3dir 29308
Description: Distributive law for disjunction. (Contributed by Thierry Arnoux, 3-Jul-2017.)
Assertion
Ref Expression
or3dir  |-  ( ( ( ph  /\  ps  /\ 
ch )  \/  ta ) 
<->  ( ( ph  \/  ta )  /\  ( ps  \/  ta )  /\  ( ch  \/  ta ) ) )

Proof of Theorem or3dir
StepHypRef Expression
1 or3di 29307 . 2  |-  ( ( ta  \/  ( ph  /\ 
ps  /\  ch )
)  <->  ( ( ta  \/  ph )  /\  ( ta  \/  ps )  /\  ( ta  \/  ch ) ) )
2 orcom 402 . 2  |-  ( ( ta  \/  ( ph  /\ 
ps  /\  ch )
)  <->  ( ( ph  /\ 
ps  /\  ch )  \/  ta ) )
3 orcom 402 . . 3  |-  ( ( ta  \/  ph )  <->  (
ph  \/  ta )
)
4 orcom 402 . . 3  |-  ( ( ta  \/  ps )  <->  ( ps  \/  ta )
)
5 orcom 402 . . 3  |-  ( ( ta  \/  ch )  <->  ( ch  \/  ta )
)
63, 4, 53anbi123i 1251 . 2  |-  ( ( ( ta  \/  ph )  /\  ( ta  \/  ps )  /\  ( ta  \/  ch ) )  <-> 
( ( ph  \/  ta )  /\  ( ps  \/  ta )  /\  ( ch  \/  ta ) ) )
71, 2, 63bitr3i 290 1  |-  ( ( ( ph  /\  ps  /\ 
ch )  \/  ta ) 
<->  ( ( ph  \/  ta )  /\  ( ps  \/  ta )  /\  ( ch  \/  ta ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    \/ wo 383    /\ w3a 1037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator