MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orabs Structured version   Visualization version   Unicode version

Theorem orabs 900
Description: Absorption of redundant internal disjunct. Compare Theorem *4.45 of [WhiteheadRussell] p. 119. (Contributed by NM, 21-Jun-1993.) (Proof shortened by Wolf Lammen, 28-Feb-2014.)
Assertion
Ref Expression
orabs  |-  ( ph  <->  ( ( ph  \/  ps )  /\  ph ) )

Proof of Theorem orabs
StepHypRef Expression
1 orc 400 . 2  |-  ( ph  ->  ( ph  \/  ps ) )
21pm4.71ri 665 1  |-  ( ph  <->  ( ( ph  \/  ps )  /\  ph ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    \/ wo 383    /\ wa 384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator