MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  orbi1 Structured version   Visualization version   Unicode version

Theorem orbi1 742
Description: Theorem *4.37 of [WhiteheadRussell] p. 118. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
orbi1  |-  ( (
ph 
<->  ps )  ->  (
( ph  \/  ch ) 
<->  ( ps  \/  ch ) ) )

Proof of Theorem orbi1
StepHypRef Expression
1 id 22 . 2  |-  ( (
ph 
<->  ps )  ->  ( ph 
<->  ps ) )
21orbi1d 739 1  |-  ( (
ph 
<->  ps )  ->  (
( ph  \/  ch ) 
<->  ( ps  \/  ch ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-or 385
This theorem is referenced by:  prmdvdsexp  15427  orbi1rVD  39083  sbc3orgVD  39086
  Copyright terms: Public domain W3C validator