| Mathbox for Jarvin Udandy |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > plvofpos | Structured version Visualization version Unicode version | ||
| Description: rh is derivable because ONLY one of ch, th, ta, et is implied by mu. (Contributed by Jarvin Udandy, 11-Sep-2020.) |
| Ref | Expression |
|---|---|
| plvofpos.1 |
|
| plvofpos.2 |
|
| plvofpos.3 |
|
| plvofpos.4 |
|
| plvofpos.5 |
|
| plvofpos.6 |
|
| plvofpos.7 |
|
| plvofpos.8 |
|
| plvofpos.9 |
|
| Ref | Expression |
|---|---|
| plvofpos |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | plvofpos.8 |
. . 3
| |
| 2 | plvofpos.9 |
. . 3
| |
| 3 | 1, 2 | pm3.2i 471 |
. 2
|
| 4 | plvofpos.7 |
. . . 4
| |
| 5 | 4 | bicomi 214 |
. . 3
|
| 6 | 5 | biimpi 206 |
. 2
|
| 7 | 3, 6 | ax-mp 5 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-an 386 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |