MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm2.8 Structured version   Visualization version   Unicode version

Theorem pm2.8 895
Description: Theorem *2.8 of [WhiteheadRussell] p. 108. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 5-Jan-2013.)
Assertion
Ref Expression
pm2.8  |-  ( (
ph  \/  ps )  ->  ( ( -.  ps  \/  ch )  ->  ( ph  \/  ch ) ) )

Proof of Theorem pm2.8
StepHypRef Expression
1 pm2.53 388 . . 3  |-  ( (
ph  \/  ps )  ->  ( -.  ph  ->  ps ) )
21con1d 139 . 2  |-  ( (
ph  \/  ps )  ->  ( -.  ps  ->  ph ) )
32orim1d 884 1  |-  ( (
ph  \/  ps )  ->  ( ( -.  ps  \/  ch )  ->  ( ph  \/  ch ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator