MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm4.44 Structured version   Visualization version   Unicode version

Theorem pm4.44 601
Description: Theorem *4.44 of [WhiteheadRussell] p. 119. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm4.44  |-  ( ph  <->  (
ph  \/  ( ph  /\ 
ps ) ) )

Proof of Theorem pm4.44
StepHypRef Expression
1 orc 400 . 2  |-  ( ph  ->  ( ph  \/  ( ph  /\  ps ) ) )
2 id 22 . . 3  |-  ( ph  ->  ph )
3 simpl 473 . . 3  |-  ( (
ph  /\  ps )  ->  ph )
42, 3jaoi 394 . 2  |-  ( (
ph  \/  ( ph  /\ 
ps ) )  ->  ph )
51, 4impbii 199 1  |-  ( ph  <->  (
ph  \/  ( ph  /\ 
ps ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    \/ wo 383    /\ wa 384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator