MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  re1luk3 Structured version   Visualization version   Unicode version

Theorem re1luk3 1637
Description: luk-3 1582 derived from the Tarski-Bernays-Wajsberg axioms.

This theorem, along with re1luk1 1635 and re1luk2 1636 proves that tbw-ax1 1625, tbw-ax2 1626, tbw-ax3 1627, and tbw-ax4 1628, with ax-mp 5 can be used as a complete axiom system for all of propositional calculus. (Contributed by Anthony Hart, 16-Aug-2011.) (Proof modification is discouraged.) (New usage is discouraged.)

Assertion
Ref Expression
re1luk3  |-  ( ph  ->  ( -.  ph  ->  ps ) )

Proof of Theorem re1luk3
StepHypRef Expression
1 tbw-negdf 1624 . . 3  |-  ( ( ( -.  ph  ->  (
ph  -> F.  ) )  ->  ( ( (
ph  -> F.  )  ->  -.  ph )  -> F.  ) )  -> F.  )
2 tbwlem5 1634 . . 3  |-  ( ( ( ( -.  ph  ->  ( ph  -> F.  ) )  ->  (
( ( ph  -> F.  )  ->  -.  ph )  -> F.  ) )  -> F.  )  ->  ( -. 
ph  ->  ( ph  -> F.  ) ) )
31, 2ax-mp 5 . 2  |-  ( -. 
ph  ->  ( ph  -> F.  ) )
4 tbw-ax4 1628 . . . 4  |-  ( F. 
->  ps )
5 tbw-ax1 1625 . . . . 5  |-  ( (
ph  -> F.  )  -> 
( ( F.  ->  ps )  ->  ( ph  ->  ps ) ) )
6 tbwlem1 1630 . . . . 5  |-  ( ( ( ph  -> F.  )  ->  ( ( F. 
->  ps )  ->  ( ph  ->  ps ) ) )  ->  ( ( F.  ->  ps )  -> 
( ( ph  -> F.  )  ->  ( ph  ->  ps ) ) ) )
75, 6ax-mp 5 . . . 4  |-  ( ( F.  ->  ps )  ->  ( ( ph  -> F.  )  ->  ( ph  ->  ps ) ) )
84, 7ax-mp 5 . . 3  |-  ( (
ph  -> F.  )  -> 
( ph  ->  ps )
)
9 tbwlem1 1630 . . 3  |-  ( ( ( ph  -> F.  )  ->  ( ph  ->  ps ) )  ->  ( ph  ->  ( ( ph  -> F.  )  ->  ps ) ) )
108, 9ax-mp 5 . 2  |-  ( ph  ->  ( ( ph  -> F.  )  ->  ps )
)
11 tbw-ax1 1625 . 2  |-  ( ( -.  ph  ->  ( ph  -> F.  ) )  -> 
( ( ( ph  -> F.  )  ->  ps )  ->  ( -.  ph  ->  ps ) ) )
123, 10, 11mpsyl 68 1  |-  ( ph  ->  ( -.  ph  ->  ps ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4   F. wfal 1488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-tru 1486  df-fal 1489
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator