Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rp-frege3g Structured version   Visualization version   Unicode version

Theorem rp-frege3g 38088
Description: Add antecedent to ax-frege2 38085. More general statement than frege3 38089. Like ax-frege2 38085, it is essentially a closed form of mpd 15, however it has an extra antecedent.

It would be more natural to prove from a1i 11 and ax-frege2 38085 in Metamath. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)

Assertion
Ref Expression
rp-frege3g  |-  ( ph  ->  ( ( ps  ->  ( ch  ->  th )
)  ->  ( ( ps  ->  ch )  -> 
( ps  ->  th )
) ) )

Proof of Theorem rp-frege3g
StepHypRef Expression
1 ax-frege2 38085 . 2  |-  ( ( ps  ->  ( ch  ->  th ) )  -> 
( ( ps  ->  ch )  ->  ( ps  ->  th ) ) )
2 ax-frege1 38084 . 2  |-  ( ( ( ps  ->  ( ch  ->  th ) )  -> 
( ( ps  ->  ch )  ->  ( ps  ->  th ) ) )  ->  ( ph  ->  ( ( ps  ->  ( ch  ->  th ) )  -> 
( ( ps  ->  ch )  ->  ( ps  ->  th ) ) ) ) )
31, 2ax-mp 5 1  |-  ( ph  ->  ( ( ps  ->  ( ch  ->  th )
)  ->  ( ( ps  ->  ch )  -> 
( ps  ->  th )
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-frege1 38084  ax-frege2 38085
This theorem is referenced by:  rp-frege4g  38092
  Copyright terms: Public domain W3C validator