MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  stoic4a Structured version   Visualization version   Unicode version

Theorem stoic4a 1702
Description: Stoic logic Thema 4 version a. Statement T4 of [Bobzien] p. 117 shows a reconstructed version of Stoic logic Thema 4: "When from two assertibles a third follows, and from the third and one (or both) of the two and one (or more) external assertible(s) another follows, then this other follows from the first two and the external(s)."

We use  th to represent the "external" assertibles. This is version a, which is without the phrase "or both"; see stoic4b 1703 for the version with the phrase "or both". (Contributed by David A. Wheeler, 17-Feb-2019.)

Hypotheses
Ref Expression
stoic4a.1  |-  ( (
ph  /\  ps )  ->  ch )
stoic4a.2  |-  ( ( ch  /\  ph  /\  th )  ->  ta )
Assertion
Ref Expression
stoic4a  |-  ( (
ph  /\  ps  /\  th )  ->  ta )

Proof of Theorem stoic4a
StepHypRef Expression
1 stoic4a.1 . . 3  |-  ( (
ph  /\  ps )  ->  ch )
213adant3 1081 . 2  |-  ( (
ph  /\  ps  /\  th )  ->  ch )
3 simp1 1061 . 2  |-  ( (
ph  /\  ps  /\  th )  ->  ph )
4 simp3 1063 . 2  |-  ( (
ph  /\  ps  /\  th )  ->  th )
5 stoic4a.2 . 2  |-  ( ( ch  /\  ph  /\  th )  ->  ta )
62, 3, 4, 5syl3anc 1326 1  |-  ( (
ph  /\  ps  /\  th )  ->  ta )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 386  df-3an 1039
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator