![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl313anc | Structured version Visualization version Unicode version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
syl12anc.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
syl12anc.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
syl12anc.3 |
![]() ![]() ![]() ![]() ![]() ![]() |
syl22anc.4 |
![]() ![]() ![]() ![]() ![]() ![]() |
syl23anc.5 |
![]() ![]() ![]() ![]() ![]() ![]() |
syl33anc.6 |
![]() ![]() ![]() ![]() ![]() ![]() |
syl133anc.7 |
![]() ![]() ![]() ![]() ![]() ![]() |
syl313anc.8 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
syl313anc |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl12anc.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | syl12anc.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | syl12anc.3 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
4 | syl22anc.4 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
5 | syl23anc.5 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
6 | syl33anc.6 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
7 | syl133anc.7 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
8 | 5, 6, 7 | 3jca 1242 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | syl313anc.8 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
10 | 1, 2, 3, 4, 8, 9 | syl311anc 1340 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 386 df-3an 1039 |
This theorem is referenced by: syl323anc 1356 osumcllem6N 35247 cdlemg13 35940 cdlemk7u 36158 cdlemk31 36184 cdlemk27-3 36195 cdlemk19ylem 36218 cdlemk46 36236 |
Copyright terms: Public domain | W3C validator |