![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl3anl | Structured version Visualization version Unicode version |
Description: A triple syllogism inference. (Contributed by NM, 24-Dec-2006.) |
Ref | Expression |
---|---|
syl3anl.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
syl3anl.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
syl3anl.3 |
![]() ![]() ![]() ![]() ![]() ![]() |
syl3anl.4 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
syl3anl |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3anl.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | syl3anl.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | syl3anl.3 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | 3anim123i 1247 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | syl3anl.4 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | 4, 5 | sylan 488 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 386 df-3an 1039 |
This theorem is referenced by: chlej1 28369 chlej2 28370 atcvatlem 29244 |
Copyright terms: Public domain | W3C validator |