MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  truortru Structured version   Visualization version   Unicode version

Theorem truortru 1510
Description: A  \/ identity. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.)
Assertion
Ref Expression
truortru  |-  ( ( T.  \/ T.  )  <-> T.  )

Proof of Theorem truortru
StepHypRef Expression
1 oridm 536 1  |-  ( ( T.  \/ T.  )  <-> T.  )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    \/ wo 383   T. wtru 1484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-or 385
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator