| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xorneg2 | Structured version Visualization version Unicode version | ||
| Description: The connector |
| Ref | Expression |
|---|---|
| xorneg2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xor 1465 |
. 2
| |
| 2 | pm5.18 371 |
. 2
| |
| 3 | xnor 1466 |
. 2
| |
| 4 | 1, 2, 3 | 3bitr2i 288 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-xor 1465 |
| This theorem is referenced by: xorneg1 1475 xorneg 1476 |
| Copyright terms: Public domain | W3C validator |