MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.21OLD Structured version   Visualization version   GIF version

Theorem 19.21OLD 2214
Description: Obsolete proof of 19.21 2075 as of 6-Oct-2021. (Contributed by NM, 14-May-1993.) (Revised by Mario Carneiro, 24-Sep-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
19.21OLD.1 𝑥𝜑
Assertion
Ref Expression
19.21OLD (∀𝑥(𝜑𝜓) ↔ (𝜑 → ∀𝑥𝜓))

Proof of Theorem 19.21OLD
StepHypRef Expression
1 19.21OLD.1 . 2 𝑥𝜑
2 19.21tOLD 2213 . 2 (Ⅎ𝑥𝜑 → (∀𝑥(𝜑𝜓) ↔ (𝜑 → ∀𝑥𝜓)))
31, 2ax-mp 5 1 (∀𝑥(𝜑𝜓) ↔ (𝜑 → ∀𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wal 1481  wnfOLD 1709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-10 2019  ax-12 2047
This theorem depends on definitions:  df-bi 197  df-ex 1705  df-nfOLD 1721
This theorem is referenced by:  19.21-2OLD  2215  19.21hOLD  2216
  Copyright terms: Public domain W3C validator