| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.32v | Structured version Visualization version GIF version | ||
| Description: Version of 19.32 2101 with a dv condition, requiring fewer axioms. (Contributed by BJ, 7-Mar-2020.) |
| Ref | Expression |
|---|---|
| 19.32v | ⊢ (∀𝑥(𝜑 ∨ 𝜓) ↔ (𝜑 ∨ ∀𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.21v 1868 | . 2 ⊢ (∀𝑥(¬ 𝜑 → 𝜓) ↔ (¬ 𝜑 → ∀𝑥𝜓)) | |
| 2 | df-or 385 | . . 3 ⊢ ((𝜑 ∨ 𝜓) ↔ (¬ 𝜑 → 𝜓)) | |
| 3 | 2 | albii 1747 | . 2 ⊢ (∀𝑥(𝜑 ∨ 𝜓) ↔ ∀𝑥(¬ 𝜑 → 𝜓)) |
| 4 | df-or 385 | . 2 ⊢ ((𝜑 ∨ ∀𝑥𝜓) ↔ (¬ 𝜑 → ∀𝑥𝜓)) | |
| 5 | 1, 3, 4 | 3bitr4i 292 | 1 ⊢ (∀𝑥(𝜑 ∨ 𝜓) ↔ (𝜑 ∨ ∀𝑥𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∨ wo 383 ∀wal 1481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-ex 1705 |
| This theorem is referenced by: 19.31v 1870 pm10.12 38557 |
| Copyright terms: Public domain | W3C validator |