| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.43OLD | Structured version Visualization version GIF version | ||
| Description: Obsolete proof of 19.43 1810. Do not delete as it is referenced on the mmrecent.html page and in conventions-label 27259. (Contributed by NM, 5-Aug-1993.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 19.43OLD | ⊢ (∃𝑥(𝜑 ∨ 𝜓) ↔ (∃𝑥𝜑 ∨ ∃𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ioran 511 | . . . . 5 ⊢ (¬ (𝜑 ∨ 𝜓) ↔ (¬ 𝜑 ∧ ¬ 𝜓)) | |
| 2 | 1 | albii 1747 | . . . 4 ⊢ (∀𝑥 ¬ (𝜑 ∨ 𝜓) ↔ ∀𝑥(¬ 𝜑 ∧ ¬ 𝜓)) |
| 3 | 19.26 1798 | . . . 4 ⊢ (∀𝑥(¬ 𝜑 ∧ ¬ 𝜓) ↔ (∀𝑥 ¬ 𝜑 ∧ ∀𝑥 ¬ 𝜓)) | |
| 4 | alnex 1706 | . . . . 5 ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) | |
| 5 | alnex 1706 | . . . . 5 ⊢ (∀𝑥 ¬ 𝜓 ↔ ¬ ∃𝑥𝜓) | |
| 6 | 4, 5 | anbi12i 733 | . . . 4 ⊢ ((∀𝑥 ¬ 𝜑 ∧ ∀𝑥 ¬ 𝜓) ↔ (¬ ∃𝑥𝜑 ∧ ¬ ∃𝑥𝜓)) |
| 7 | 2, 3, 6 | 3bitri 286 | . . 3 ⊢ (∀𝑥 ¬ (𝜑 ∨ 𝜓) ↔ (¬ ∃𝑥𝜑 ∧ ¬ ∃𝑥𝜓)) |
| 8 | 7 | notbii 310 | . 2 ⊢ (¬ ∀𝑥 ¬ (𝜑 ∨ 𝜓) ↔ ¬ (¬ ∃𝑥𝜑 ∧ ¬ ∃𝑥𝜓)) |
| 9 | df-ex 1705 | . 2 ⊢ (∃𝑥(𝜑 ∨ 𝜓) ↔ ¬ ∀𝑥 ¬ (𝜑 ∨ 𝜓)) | |
| 10 | oran 517 | . 2 ⊢ ((∃𝑥𝜑 ∨ ∃𝑥𝜓) ↔ ¬ (¬ ∃𝑥𝜑 ∧ ¬ ∃𝑥𝜓)) | |
| 11 | 8, 9, 10 | 3bitr4i 292 | 1 ⊢ (∃𝑥(𝜑 ∨ 𝜓) ↔ (∃𝑥𝜑 ∨ ∃𝑥𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 196 ∨ wo 383 ∧ wa 384 ∀wal 1481 ∃wex 1704 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ex 1705 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |